

Introduction to Quantum Mechanics (2nd Edition)

By David J. Griffiths

Download now

Read Online

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths

This book first teaches learners how to *do* quantum mechanics, and then provides them with a more insightful discussion of what it *means*. Fundamental principles are covered, quantum theory presented, and special techniques developed for attacking realistic problems. The book's two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers.

 [Download Introduction to Quantum Mechanics \(2nd Edition\) ...pdf](#)

 [Read Online Introduction to Quantum Mechanics \(2nd Edition\) ...pdf](#)

Introduction to Quantum Mechanics (2nd Edition)

By David J. Griffiths

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths

This book first teaches learners how to *do* quantum mechanics, and then provides them with a more insightful discussion of what it *means*. Fundamental principles are covered, quantum theory presented, and special techniques developed for attacking realistic problems. The book's two-part coverage organizes topics under basic theory, and assembles an arsenal of approximation schemes with illustrative applications. For physicists and engineers.

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths Bibliography

- Sales Rank: #56990 in Books
- Published on: 2004-04-10
- Original language: English
- Number of items: 1
- Dimensions: 9.47" h x 1.17" w x 7.42" l, 1.86 pounds
- Binding: Hardcover
- 480 pages

 [Download Introduction to Quantum Mechanics \(2nd Edition\) ...pdf](#)

 [Read Online Introduction to Quantum Mechanics \(2nd Edition\) ...pdf](#)

Download and Read Free Online Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths

Editorial Review

Excerpt. © Reprinted by permission. All rights reserved.

Unlike Newton's mechanics, or Maxwell's electrodynamics, or Einstein's relativity, quantum theory was not created—or even definitively packaged—by one individual, and it retains to this day some of the scars of its exhilarating but traumatic youth. There is no general consensus as to what its fundamental principles are, how it should be taught, or what it really "means." Every competent physicist can "do" quantum mechanics, but the stories we tell ourselves about what we are doing are as various as the tales of Scheherazade, and almost as implausible. Niels Bohr said, "If you are not confused by quantum physics then you haven't really understood it"; Richard Feynman remarked, "I think I can safely say that nobody understands quantum mechanics."

The purpose of this book is to teach you how to *do* quantum mechanics. Apart from some essential background in Chapter 1, the deeper quasiphilosophical questions are saved for the end. I do not believe one can intelligently discuss what quantum mechanics *means* until one has a firm sense of what quantum mechanics *does*. But if you absolutely cannot wait, by all means read the Afterword immediately following Chapter 1.

Not only is quantum theory conceptually rich, it is also technically difficult, and exact solutions to all but the most artificial textbook examples are few and far between. It is therefore essential to develop special techniques for attacking more realistic problems. Accordingly, this book is divided into two parts; Part I covers the basic theory, and Part II assembles an arsenal of approximation schemes, with illustrative applications. Although it is important to keep the two parts *logically* separate, it is not necessary to study the material in the order presented here. Some instructors, for example, may wish to treat time-independent perturbation theory immediately after Chapter 2.

This book is intended for a one-semester or one-year course at the junior or senior level. A one-semester course will have to concentrate mainly on Part I; a full-year course should have room for supplementary material beyond Part II. The reader must be familiar with the rudiments of linear algebra (as summarized in the Appendix), complex numbers, and calculus up through partial derivatives; some acquaintance with Fourier analysis and the Dirac delta function would help. Elementary classical mechanics is essential, of course, and a little electrodynamics would be useful in places. As always, the more physics and math you know the easier it will be, and the more you will get out of your study. But I would like to emphasize that quantum mechanics is not, in my view, something that flows smoothly and naturally from earlier theories. On the contrary, it represents an abrupt and revolutionary departure from classical ideas, calling forth a wholly new and radically counterintuitive way of thinking about the world. That, indeed, is what makes it such a fascinating subject.

At first glance, this book may strike you as forbiddingly mathematical. We encounter Legendre, Hermite, and Laguerre polynomials, spherical harmonics, Bessel, Neumann, and Hankel functions, Airy functions, and even the Riemann zeta function—not to mention Fourier transforms, Hilbert spaces, hermitian operators, Clebsch-Gordan coefficients, and Lagrange multipliers. Is all this baggage really necessary? Perhaps not, but physics is like carpentry: Using the right tool makes the job *easier*, not more difficult, and teaching quantum mechanics without the appropriate mathematical equipment is like asking the student to dig a foundation with a screwdriver. (On the other hand, it can be tedious and diverting if the instructor feels obliged to give

elaborate lessons on the proper use of each tool. My own instinct is to hand the students shovels and tell them to start digging. They may develop blisters at first, but I still think this is the most efficient and exciting way to learn.) At any rate, I can assure you that there is no deep mathematics in this book, and if you run into something unfamiliar, and you don't find my explanation adequate, by all means *ask* someone about it, or look it up. There are many good books on mathematical methods—I particularly recommend Mary Boas, *Mathematical Methods in the Physical Sciences*, 2nd ed., Wiley, New York (1983), or George Arfken and Hans-Jurgen Weber, *Mathematical Methods for Physicists*, 5th ed., Academic Press, Orlando (2000). But whatever you do, don't let the mathematics—which, for us, is only a *tool*—interfere with the physics.

Several readers have noted that there are fewer worked examples in this book than is customary, and that some important material is relegated to the problems. This is no accident. I don't believe you can learn quantum mechanics without doing many exercises for yourself. Instructors should of course go over as many problems in class as time allows, but students should be warned that this is not a subject about which anyone has natural intuitions—you're developing a whole new set of muscles here, and there is simply no substitute for calisthenics. Mark Semon suggested that I offer a "Michelin Guide" to the problems, with varying numbers of stars to indicate the level of difficulty and importance. This seemed like a good idea (though, like the quality of a restaurant, the significance of a problem is partly a matter of taste); I have adopted the following rating scheme:

- * an essential problem that every reader should study;
- ** a somewhat more difficult or more peripheral problem;
- *** an unusually challenging problem, that may take over an hour.

(No stars at all means fast food: OK if you're hungry, but not very nourishing.) Most of the one-star problems appear at the end of the relevant section; most of the three-star problems are at the end of the chapter. A solution manual is available (to instructors only) from the publisher.

In preparing the second edition I have tried to retain as much as possible the spirit of the first. The only wholesale change is Chapter 3, which was much too long and diverting; it has been completely rewritten, with the background material on finite-dimensional vector spaces (a subject with which most students at this level are already comfortable) relegated to the Appendix. I have added some examples in Chapter 2 (and fixed the awkward definition of raising and lowering operators for the harmonic oscillator). In later chapters I have made as few changes as I could, even preserving the numbering of problems and equations, where possible. The treatment is streamlined in places (a better introduction to angular momentum it! Chapter 4, for instance, a simpler proof of the adiabatic theorem in Chapter 10, and a new section on partial wave phase shifts in Chapter 11). Inevitably, the second edition is a bit longer than the first, which I regret, but I hope it is cleaner and more accessible.

I have benefited from the comments and advice of many colleagues, who read the original manuscript, pointed out weaknesses (or errors) in the first edition, suggested improvements in the presentation, and supplied interesting problems. I would like to thank in particular P. K. Aravind (Worcester Polytech), Greg Benesh (Baylor), David Boness (Seattle), Burt Brody (Bard), Ash Carter (Drew), Edward Chang (Massachusetts), Peter Copings (Swarthmore), Richard Crandall (Reed), Jeff Dunham (Middlebury), Greg Elliott (Puget Sound), John Essick (Reed), Gregg Franklin (Carnegie Mellon), Henry Greenside (Duke), Paul Haines (Dartmouth), J. R. Huddle (Navy), Larry Hunter (Amherst), David Kaplan (Washington), Alex Kuzmich (Georgia Tech), Peter Leung (Portland State), Tony Liss (Illinois), Jeffry Mallow (Chicago Loyola), James McTavish (Liverpool), James Nearing (Miami), Johnny Powell (Reed), Krishna Rajagopal (MIT), Brian Raue (Florida International), Robert Reynolds (Reed), Keith Riles (Michigan), Mark Semon (Bates), Herschel Snodgrass (Lewis and Clark), John Taylor (Colorado), Stavros Theodorakis (Cyprus), A. S. Tremsin (Berkeley), Dan Velleman (Amherst), Nicholas Wheeler (Reed), Scott Willenbrock (Illinois),

William Wootters (Williams), Sam Wurzel (Brown), and Jens Zorn (Michigan).

Users Review

From reader reviews:

Lorena Repass:

What do you concentrate on book? It is just for students because they're still students or the item for all people in the world, exactly what the best subject for that? Merely you can be answered for that query above. Every person has diverse personality and hobby for every single other. Don't to be pressured someone or something that they don't wish do that. You must know how great as well as important the book *Introduction to Quantum Mechanics* (2nd Edition). All type of book could you see on many sources. You can look for the internet solutions or other social media.

Edward Strode:

Information is provisions for anyone to get better life, information these days can get by anyone at everywhere. The information can be a information or any news even an issue. What people must be consider when those information which is within the former life are difficult to be find than now is taking seriously which one is suitable to believe or which one the actual resource are convinced. If you receive the unstable resource then you have it as your main information you will see huge disadvantage for you. All of those possibilities will not happen within you if you take *Introduction to Quantum Mechanics* (2nd Edition) as the daily resource information.

Salvador Perez:

Typically the book *Introduction to Quantum Mechanics* (2nd Edition) will bring someone to the new experience of reading the book. The author style to describe the idea is very unique. In case you try to find new book to read, this book very appropriate to you. The book *Introduction to Quantum Mechanics* (2nd Edition) is much recommended to you you just read. You can also get the e-book from the official web site, so you can more readily to read the book.

Justin Pritchett:

This *Introduction to Quantum Mechanics* (2nd Edition) is great book for you because the content which can be full of information for you who always deal with world and still have to make decision every minute. This particular book reveal it info accurately using great coordinate word or we can say no rambling sentences inside. So if you are read that hurriedly you can have whole data in it. Doesn't mean it only offers you straight forward sentences but hard core information with wonderful delivering sentences. Having *Introduction to Quantum Mechanics* (2nd Edition) in your hand like having the world in your arm, information in it is not ridiculous just one. We can say that no guide that offer you world with ten or fifteen tiny right but this book already do that. So , this really is good reading book. Heya Mr. and Mrs. busy do you still doubt that will?

**Download and Read Online Introduction to Quantum Mechanics
(2nd Edition) By David J. Griffiths #UN3BDJIAKW2**

Read Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths for online ebook

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths Free PDF d0wnl0ad, audio books, books to read, good books to read, cheap books, good books, online books, books online, book reviews epub, read books online, books to read online, online library, greatbooks to read, PDF best books to read, top books to read Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths books to read online.

Online Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths ebook PDF download

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths Doc

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths Mobipocket

Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths EPub

UN3BDJIAKW2: Introduction to Quantum Mechanics (2nd Edition) By David J. Griffiths